3.6.72 \(\int \frac {(a+b \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx\) [572]

3.6.72.1 Optimal result
3.6.72.2 Mathematica [A] (verified)
3.6.72.3 Rubi [A] (verified)
3.6.72.4 Maple [B] (verified)
3.6.72.5 Fricas [C] (verification not implemented)
3.6.72.6 Sympy [F(-1)]
3.6.72.7 Maxima [F]
3.6.72.8 Giac [F]
3.6.72.9 Mupad [F(-1)]

3.6.72.1 Optimal result

Integrand size = 25, antiderivative size = 241 \[ \int \frac {(a+b \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\frac {10 a b \left (a^2-2 b^2\right ) \sqrt {e \cos (c+d x)}}{21 d e^5}+\frac {2 \left (5 a^4-12 a^2 b^2+12 b^4\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d e^4 \sqrt {e \cos (c+d x)}}+\frac {2 b \left (5 a^2-6 b^2\right ) \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}{21 d e^5}+\frac {2 (b+a \sin (c+d x)) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}-\frac {2 (a+b \sin (c+d x))^2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{21 d e^3 (e \cos (c+d x))^{3/2}} \]

output
2/7*(b+a*sin(d*x+c))*(a+b*sin(d*x+c))^3/d/e/(e*cos(d*x+c))^(7/2)-2/21*(a+b 
*sin(d*x+c))^2*(a*b-(5*a^2-6*b^2)*sin(d*x+c))/d/e^3/(e*cos(d*x+c))^(3/2)+2 
/21*(5*a^4-12*a^2*b^2+12*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2 
*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/d/e^4/(e*cos(d* 
x+c))^(1/2)+10/21*a*b*(a^2-2*b^2)*(e*cos(d*x+c))^(1/2)/d/e^5+2/21*b*(5*a^2 
-6*b^2)*(a+b*sin(d*x+c))*(e*cos(d*x+c))^(1/2)/d/e^5
 
3.6.72.2 Mathematica [A] (verified)

Time = 2.17 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.73 \[ \int \frac {(a+b \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\frac {\sqrt {e \cos (c+d x)} \sec ^4(c+d x) \left (48 a^3 b-8 a b^3-56 a b^3 \cos (2 (c+d x))+4 \left (5 a^4-12 a^2 b^2+12 b^4\right ) \cos ^{\frac {7}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+17 a^4 \sin (c+d x)+60 a^2 b^2 \sin (c+d x)+3 b^4 \sin (c+d x)+5 a^4 \sin (3 (c+d x))-12 a^2 b^2 \sin (3 (c+d x))-9 b^4 \sin (3 (c+d x))\right )}{42 d e^5} \]

input
Integrate[(a + b*Sin[c + d*x])^4/(e*Cos[c + d*x])^(9/2),x]
 
output
(Sqrt[e*Cos[c + d*x]]*Sec[c + d*x]^4*(48*a^3*b - 8*a*b^3 - 56*a*b^3*Cos[2* 
(c + d*x)] + 4*(5*a^4 - 12*a^2*b^2 + 12*b^4)*Cos[c + d*x]^(7/2)*EllipticF[ 
(c + d*x)/2, 2] + 17*a^4*Sin[c + d*x] + 60*a^2*b^2*Sin[c + d*x] + 3*b^4*Si 
n[c + d*x] + 5*a^4*Sin[3*(c + d*x)] - 12*a^2*b^2*Sin[3*(c + d*x)] - 9*b^4* 
Sin[3*(c + d*x)]))/(42*d*e^5)
 
3.6.72.3 Rubi [A] (verified)

Time = 1.25 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.03, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 3170, 27, 3042, 3340, 27, 3042, 3341, 27, 3042, 3148, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}}dx\)

\(\Big \downarrow \) 3170

\(\displaystyle \frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}-\frac {2 \int -\frac {(a+b \sin (c+d x))^2 \left (5 a^2-b \sin (c+d x) a-6 b^2\right )}{2 (e \cos (c+d x))^{5/2}}dx}{7 e^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(a+b \sin (c+d x))^2 \left (5 a^2-b \sin (c+d x) a-6 b^2\right )}{(e \cos (c+d x))^{5/2}}dx}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(a+b \sin (c+d x))^2 \left (5 a^2-b \sin (c+d x) a-6 b^2\right )}{(e \cos (c+d x))^{5/2}}dx}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3340

\(\displaystyle \frac {-\frac {2 \int -\frac {(a+b \sin (c+d x)) \left (a \left (5 a^2-2 b^2\right )-3 b \left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{2 \sqrt {e \cos (c+d x)}}dx}{3 e^2}-\frac {2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right ) (a+b \sin (c+d x))^2}{3 d e (e \cos (c+d x))^{3/2}}}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {(a+b \sin (c+d x)) \left (a \left (5 a^2-2 b^2\right )-3 b \left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{\sqrt {e \cos (c+d x)}}dx}{3 e^2}-\frac {2 (a+b \sin (c+d x))^2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{3 d e (e \cos (c+d x))^{3/2}}}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {(a+b \sin (c+d x)) \left (a \left (5 a^2-2 b^2\right )-3 b \left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{\sqrt {e \cos (c+d x)}}dx}{3 e^2}-\frac {2 (a+b \sin (c+d x))^2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{3 d e (e \cos (c+d x))^{3/2}}}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3341

\(\displaystyle \frac {\frac {\frac {2}{3} \int \frac {3 \left (5 a^4-12 b^2 a^2-5 b \left (a^2-2 b^2\right ) \sin (c+d x) a+12 b^4\right )}{2 \sqrt {e \cos (c+d x)}}dx+\frac {2 b \left (5 a^2-6 b^2\right ) \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}{d e}}{3 e^2}-\frac {2 (a+b \sin (c+d x))^2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{3 d e (e \cos (c+d x))^{3/2}}}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {5 a^4-12 b^2 a^2-5 b \left (a^2-2 b^2\right ) \sin (c+d x) a+12 b^4}{\sqrt {e \cos (c+d x)}}dx+\frac {2 b \left (5 a^2-6 b^2\right ) \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}{d e}}{3 e^2}-\frac {2 (a+b \sin (c+d x))^2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{3 d e (e \cos (c+d x))^{3/2}}}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {5 a^4-12 b^2 a^2-5 b \left (a^2-2 b^2\right ) \sin (c+d x) a+12 b^4}{\sqrt {e \cos (c+d x)}}dx+\frac {2 b \left (5 a^2-6 b^2\right ) \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}{d e}}{3 e^2}-\frac {2 (a+b \sin (c+d x))^2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{3 d e (e \cos (c+d x))^{3/2}}}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3148

\(\displaystyle \frac {\frac {\left (5 a^4-12 a^2 b^2+12 b^4\right ) \int \frac {1}{\sqrt {e \cos (c+d x)}}dx+\frac {10 a b \left (a^2-2 b^2\right ) \sqrt {e \cos (c+d x)}}{d e}+\frac {2 b \left (5 a^2-6 b^2\right ) \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}{d e}}{3 e^2}-\frac {2 (a+b \sin (c+d x))^2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{3 d e (e \cos (c+d x))^{3/2}}}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (5 a^4-12 a^2 b^2+12 b^4\right ) \int \frac {1}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {10 a b \left (a^2-2 b^2\right ) \sqrt {e \cos (c+d x)}}{d e}+\frac {2 b \left (5 a^2-6 b^2\right ) \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}{d e}}{3 e^2}-\frac {2 (a+b \sin (c+d x))^2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{3 d e (e \cos (c+d x))^{3/2}}}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {\frac {\frac {\left (5 a^4-12 a^2 b^2+12 b^4\right ) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{\sqrt {e \cos (c+d x)}}+\frac {10 a b \left (a^2-2 b^2\right ) \sqrt {e \cos (c+d x)}}{d e}+\frac {2 b \left (5 a^2-6 b^2\right ) \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}{d e}}{3 e^2}-\frac {2 (a+b \sin (c+d x))^2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{3 d e (e \cos (c+d x))^{3/2}}}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\left (5 a^4-12 a^2 b^2+12 b^4\right ) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {e \cos (c+d x)}}+\frac {10 a b \left (a^2-2 b^2\right ) \sqrt {e \cos (c+d x)}}{d e}+\frac {2 b \left (5 a^2-6 b^2\right ) \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}{d e}}{3 e^2}-\frac {2 (a+b \sin (c+d x))^2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{3 d e (e \cos (c+d x))^{3/2}}}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {10 a b \left (a^2-2 b^2\right ) \sqrt {e \cos (c+d x)}}{d e}+\frac {2 b \left (5 a^2-6 b^2\right ) \sqrt {e \cos (c+d x)} (a+b \sin (c+d x))}{d e}+\frac {2 \left (5 a^4-12 a^2 b^2+12 b^4\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d \sqrt {e \cos (c+d x)}}}{3 e^2}-\frac {2 (a+b \sin (c+d x))^2 \left (a b-\left (5 a^2-6 b^2\right ) \sin (c+d x)\right )}{3 d e (e \cos (c+d x))^{3/2}}}{7 e^2}+\frac {2 (a \sin (c+d x)+b) (a+b \sin (c+d x))^3}{7 d e (e \cos (c+d x))^{7/2}}\)

input
Int[(a + b*Sin[c + d*x])^4/(e*Cos[c + d*x])^(9/2),x]
 
output
(2*(b + a*Sin[c + d*x])*(a + b*Sin[c + d*x])^3)/(7*d*e*(e*Cos[c + d*x])^(7 
/2)) + ((-2*(a + b*Sin[c + d*x])^2*(a*b - (5*a^2 - 6*b^2)*Sin[c + d*x]))/( 
3*d*e*(e*Cos[c + d*x])^(3/2)) + ((10*a*b*(a^2 - 2*b^2)*Sqrt[e*Cos[c + d*x] 
])/(d*e) + (2*(5*a^4 - 12*a^2*b^2 + 12*b^4)*Sqrt[Cos[c + d*x]]*EllipticF[( 
c + d*x)/2, 2])/(d*Sqrt[e*Cos[c + d*x]]) + (2*b*(5*a^2 - 6*b^2)*Sqrt[e*Cos 
[c + d*x]]*(a + b*Sin[c + d*x]))/(d*e))/(3*e^2))/(7*e^2)
 

3.6.72.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3148
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[(-b)*((g*Cos[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + 
 Simp[a   Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && 
 (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])
 

rule 3170
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-(g*Cos[e + f*x])^(p + 1))*(a + b*Sin[e + f*x 
])^(m - 1)*((b + a*Sin[e + f*x])/(f*g*(p + 1))), x] + Simp[1/(g^2*(p + 1)) 
  Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + 
a^2*(p + 2) + a*b*(m + p + 1)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g 
}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LtQ[p, -1] && (IntegersQ[2*m, 2* 
p] || IntegerQ[m])
 

rule 3340
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(g* 
Cos[e + f*x])^(p + 1))*(a + b*Sin[e + f*x])^m*((d + c*Sin[e + f*x])/(f*g*(p 
 + 1))), x] + Simp[1/(g^2*(p + 1))   Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Si 
n[e + f*x])^(m - 1)*Simp[a*c*(p + 2) + b*d*m + b*c*(m + p + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && GtQ 
[m, 0] && LtQ[p, -1] && IntegerQ[2*m] &&  !(EqQ[m, 1] && NeQ[c^2 - d^2, 0] 
&& SimplerQ[c + d*x, a + b*x])
 

rule 3341
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d)* 
(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(f*g*(m + p + 1))), x] + S 
imp[1/(m + p + 1)   Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1)*Sim 
p[a*c*(m + p + 1) + b*d*m + (a*d*m + b*c*(m + p + 1))*Sin[e + f*x], x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] 
 &&  !LtQ[p, -1] && IntegerQ[2*m] &&  !(EqQ[m, 1] && NeQ[c^2 - d^2, 0] && S 
implerQ[c + d*x, a + b*x])
 
3.6.72.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1066\) vs. \(2(245)=490\).

Time = 13.29 (sec) , antiderivative size = 1067, normalized size of antiderivative = 4.43

method result size
default \(\text {Expression too large to display}\) \(1067\)
parts \(\text {Expression too large to display}\) \(1265\)

input
int((a+b*sin(d*x+c))^4/(e*cos(d*x+c))^(9/2),x,method=_RETURNVERBOSE)
 
output
-2/21/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c) 
^2-1)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)/e^4*(-16*sin( 
1/2*d*x+1/2*c)*a*b^3+30*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c) 
^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2*a^4 
+72*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2*b^4+12*cos(1/2*d*x+1/2* 
c)*sin(1/2*d*x+1/2*c)^2*a^2*b^2-5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2* 
d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^4-12*(sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d 
*x+1/2*c),2^(1/2))*b^4-96*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*a^2*b^2+ 
96*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^2*b^2+40*cos(1/2*d*x+1/2*c)*s 
in(1/2*d*x+1/2*c)^6*a^4-72*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*b^4-40* 
cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^4+16*cos(1/2*d*x+1/2*c)*sin(1/2* 
d*x+1/2*c)^2*a^4-12*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^4-112*sin(1/ 
2*d*x+1/2*c)^5*a*b^3+112*sin(1/2*d*x+1/2*c)^3*a*b^3+12*sin(1/2*d*x+1/2*c)* 
a^3*b-96*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell 
ipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^6*a^2*b^2+144*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2* 
d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4*a^2*b^2+96*(sin(1/2*d*x+1/2*c)^2) 
^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^...
 
3.6.72.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 215, normalized size of antiderivative = 0.89 \[ \int \frac {(a+b \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\frac {\sqrt {2} {\left (-5 i \, a^{4} + 12 i \, a^{2} b^{2} - 12 i \, b^{4}\right )} \sqrt {e} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (5 i \, a^{4} - 12 i \, a^{2} b^{2} + 12 i \, b^{4}\right )} \sqrt {e} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 2 \, {\left (28 \, a b^{3} \cos \left (d x + c\right )^{2} - 12 \, a^{3} b - 12 \, a b^{3} - {\left (3 \, a^{4} + 18 \, a^{2} b^{2} + 3 \, b^{4} + {\left (5 \, a^{4} - 12 \, a^{2} b^{2} - 9 \, b^{4}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )\right )} \sqrt {e \cos \left (d x + c\right )}}{21 \, d e^{5} \cos \left (d x + c\right )^{4}} \]

input
integrate((a+b*sin(d*x+c))^4/(e*cos(d*x+c))^(9/2),x, algorithm="fricas")
 
output
1/21*(sqrt(2)*(-5*I*a^4 + 12*I*a^2*b^2 - 12*I*b^4)*sqrt(e)*cos(d*x + c)^4* 
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(5*I*a 
^4 - 12*I*a^2*b^2 + 12*I*b^4)*sqrt(e)*cos(d*x + c)^4*weierstrassPInverse(- 
4, 0, cos(d*x + c) - I*sin(d*x + c)) - 2*(28*a*b^3*cos(d*x + c)^2 - 12*a^3 
*b - 12*a*b^3 - (3*a^4 + 18*a^2*b^2 + 3*b^4 + (5*a^4 - 12*a^2*b^2 - 9*b^4) 
*cos(d*x + c)^2)*sin(d*x + c))*sqrt(e*cos(d*x + c)))/(d*e^5*cos(d*x + c)^4 
)
 
3.6.72.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\text {Timed out} \]

input
integrate((a+b*sin(d*x+c))**4/(e*cos(d*x+c))**(9/2),x)
 
output
Timed out
 
3.6.72.7 Maxima [F]

\[ \int \frac {(a+b \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\int { \frac {{\left (b \sin \left (d x + c\right ) + a\right )}^{4}}{\left (e \cos \left (d x + c\right )\right )^{\frac {9}{2}}} \,d x } \]

input
integrate((a+b*sin(d*x+c))^4/(e*cos(d*x+c))^(9/2),x, algorithm="maxima")
 
output
integrate((b*sin(d*x + c) + a)^4/(e*cos(d*x + c))^(9/2), x)
 
3.6.72.8 Giac [F]

\[ \int \frac {(a+b \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\int { \frac {{\left (b \sin \left (d x + c\right ) + a\right )}^{4}}{\left (e \cos \left (d x + c\right )\right )^{\frac {9}{2}}} \,d x } \]

input
integrate((a+b*sin(d*x+c))^4/(e*cos(d*x+c))^(9/2),x, algorithm="giac")
 
output
integrate((b*sin(d*x + c) + a)^4/(e*cos(d*x + c))^(9/2), x)
 
3.6.72.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sin (c+d x))^4}{(e \cos (c+d x))^{9/2}} \, dx=\int \frac {{\left (a+b\,\sin \left (c+d\,x\right )\right )}^4}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{9/2}} \,d x \]

input
int((a + b*sin(c + d*x))^4/(e*cos(c + d*x))^(9/2),x)
 
output
int((a + b*sin(c + d*x))^4/(e*cos(c + d*x))^(9/2), x)